GANGER GENOMICS

GENOME 541

Spring 2020

(P) httos://github.com/GavinHaLab GavinHaLab.org

Outline

1. Additional Copy Number Analysis Features

- Allelic copy number analysis

2. Estimating tumor heterogeneity

- Modeling tumor-normal admixture
- Modeling tumor clonality and heterogeneity

3. Assessing Statistical Power for Variant Discovery

- Power calculation
- Calibrating sequencing depth for variant discovery

4. Structural Rearrangement Analysis in Cancer Genomes

- Structural variant types predicted from sequencing analysis
- Complex genomic structural rearrangement patterns

Allele-based Copy Number Analysis

Copy Number Analysis: Allelic Features

Cancer Genome Copy Number Analysis Workflow

Copy Number Segmentation \& Prediction

Copy Number Analysis Workflow: Allele Features

Copy Number Analysis Workflow: Allele Features

Probabilistic Model for Allelic Copy Number Analysis

Input Data: T different genomic loci

- log ratio data $x_{1: T}$
- reference counts $a_{1: T}$ and read depth $N_{1: T}$ for SNP data

Latent State Model: copy number states

There are 8 possible joint copy number state and allele genotype states.

Transition Model

The transition model is similar to before for matrix $\boldsymbol{A} \in \mathbb{R}^{K \times K}$

Emission Model: joint likelihood for log ratio and allele data

The emission model is a mixture of the joint distributions (multivariate)

$$
p\left(x_{t}, a_{t} \mid Z_{i}=k, N_{t}, \boldsymbol{\mu}^{c}, \boldsymbol{\sigma}^{2}, \boldsymbol{\mu}^{a}\right)=\mathscr{N}\left(x_{t} \mid \mu_{k}^{c}, \sigma_{k}^{2}\right) \times \operatorname{Bin}\left(a_{t} \mid N_{t}, \mu_{k}^{a}\right)
$$

\mathbf{K}	Genotype	CN
1	$\mathrm{~A} / \mathrm{B}$	1
2	$\mathrm{AA} / \mathrm{BB}$	2
3	AB	2
4	$\mathrm{AAA} / \mathrm{BBB}$	3
5	$\mathrm{AAB} / \mathrm{ABB}$	3
6	$\mathrm{AAAA} / \mathrm{BBB}$	4
7	$\mathrm{AAAB} / \mathrm{ABBB}$	4
8	$\mathrm{AA} / \mathrm{BB}$	4

Prior Model

$$
\begin{aligned}
p\left(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}\right) \\
p\left(\mu_{k}^{c} \mid m_{k}, s_{k}\right) & =\mathcal{N}\left(\mu_{k}^{c} \mid m_{k}, s_{k}\right) \\
p\left(\sigma_{k}^{2} \mid \alpha_{k}, \boldsymbol{\beta}_{k}\right) & =\operatorname{Inv} \operatorname{Gamma}\left(\sigma_{k}^{2} \mid \alpha_{k}^{c}, \beta_{k}^{c}\right) \\
p\left(\mu_{k}^{a} \mid \alpha_{k}, \boldsymbol{\beta}_{k}\right) & =\operatorname{Beta}\left(\mu_{k}^{a} \mid \alpha_{k}^{a}, \beta_{k}^{a}\right) \\
p\left(\boldsymbol{A}_{\boldsymbol{k}, \mathbf{1}: K} \mid \boldsymbol{\delta}^{\boldsymbol{A}}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{A}_{\boldsymbol{k}, \mathbf{1}: K} \mid \boldsymbol{\delta}_{k}^{\boldsymbol{A}}\right)
\end{aligned}
$$

fred hutch

2. Estimating tumor heterogeneity

- Estimating tumor heterogeneity from copy number analysis
- References:

- ichorCNA - Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017).
- HMMcopy - Ha et al. Genome Research 22:1995-2007 (2012).
- TitanCNA - Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. Genome Research 24:1881-1893 (2014).
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Modeling tumor-normal admixture

Why estimate the model parameters $\boldsymbol{\mu}=\left\{\mu_{0}, \ldots, \mu_{5}\right\}$ and $\boldsymbol{\sigma}^{2}=\left\{\sigma_{0}^{2}, \ldots, \sigma_{5}^{2}\right\}$?

- Data variability due to sequencing depth (technical) and tumor heterogeneity (biological)

Patient 288-Time 2 Tumor Fraction $=0.26$

Modeling tumor-normal admixture

The mean $(\boldsymbol{\mu})$ of the copy number state mixture components can inform the tumor fraction.

- Recall: the log ratio input data is computed as

$$
x_{t}=\log _{2}\left(\frac{\hat{N}_{t}^{\text {Tumor }}}{\hat{N}_{t}^{\text {Normal }}}\right)
$$

- For number $c_{k} \in\{1,2,3,4,5\}$, a pure tumor with 1.0 tumor fraction copy will have log ratios $\bar{\mu}_{1: K}$

$$
\bar{\mu}_{1: K}=\log \left(\frac{c_{1: K}}{2}\right)=\left\{\log _{2}\left(\frac{1}{2}\right), \log _{2}\left(\frac{2}{2}\right), \log _{2}\left(\frac{3}{2}\right), \log _{2}\left(\frac{4}{2}\right), \log _{2}\left(\frac{5}{2}\right)\right\}
$$

Patient 288 - Ti Tumor Fraction Gain (1. Deletion (1. 4ifit fred hutch

- - - - Pure tumor (1.0 TFx) \longrightarrow Heterogeneous

Modeling tumor fraction as a parameter

- A tumor biopsy contains both tumor and normal cells

$$
\text { tumor signal } \approx[(1-n) \times \text { tumor } C N]+[n \times \text { normal } C N]
$$

- n is the fraction of non-cancer cells
- $(1-n)$ is the fraction of cancer cells
- Typically normal $C N=2$
- Then, the expected log ratio can be written as

$$
\overline{\mu_{k}}=\log _{2}\left(\frac{c_{k}}{2}\right)
$$

Pure tumor
$\mu_{k}=\log _{2}(\frac{\overbrace{2 n}+\overbrace{(1-n) c_{k}}^{\text {Normal }}}{2})$
Tumor-normal admixture (Heterogeneous)
where $c_{k} \in\{1,2,3,4,5\}$ is the tumor copy number for state k

- Let's use some examples of deletions $(\mathrm{CN}=1)$ from the Slide 10:

$$
\begin{gathered}
\bar{\mu}_{1}=\log _{2}\left(\frac{2(0)+(1-0)(1)}{2}\right)=-1 \\
\text { Pure tumor } \\
(n=0)
\end{gathered}
$$

$$
\log _{2}\left(\frac{2(0.74)+(1-0.74)(1)}{2}\right)=-0.20
$$

Tumor-normal admixture

$$
(n=0.74)
$$

- Note that this formulation does not account for genome doubling in the tumor which would involve a tumor ploidy parameter ϕ and denominator of the ratio would be $2 n+(1-n) \phi$ instead of just 2
FRED HUTCH

Modeling tumor fraction as a parameter

- The expected log ratio for copy number state k is

$$
\mu_{k}=\log _{2}\left(\frac{2 n+(1-n) c_{k}}{2}\right), \text { where } c_{k} \in\{1,2,3,4,5\}
$$

- Recall the likelihood model:

$$
p\left(x_{i} \mid Z_{i}=k, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)=\mathscr{N}\left(x_{i} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

- Since μ_{k} is now a function of n, we no longer need to estimate μ_{k}
- However, the non-cancer proportion n is what we want to estimate to obtain the tumor fraction $(1-n)$.

$$
\begin{aligned}
p\left(\mu_{k} \mid m_{k}, s_{k}\right) & =\mathcal{N}\left(\mu_{k} \mid m_{k}, s_{k}\right) \\
p\left(n \mid \alpha_{n}, \beta_{n}\right) & =\operatorname{Beta}\left(n \mid \alpha_{n}, \beta_{n}\right)
\end{aligned}
$$

Prior for n
Log Posterior
(with n terms)
$\log \mathbb{P}(n)=\sum_{t=1}^{T} \sum_{k=1}^{K} \gamma\left(Z_{t}=k\right) \log \mathscr{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)+\sum_{k=1}^{K} \log \operatorname{Beta}\left(\mu_{k} \mid \alpha_{n}, \beta_{n}\right)$.

1. Take the derivative wrt to n
2. Equate to 0
3. Find the roots to estimate n

$$
\frac{\partial(\log \mathbb{P}(n))}{\partial \boldsymbol{\mu}} \times \frac{\partial \boldsymbol{\mu}}{\partial n}=\frac{\partial(\log \mathbb{P}(n))}{\partial n}=0, \text { then find } n
$$

Since the Beta distribution is not conjugate with the Gaussian, we can use numerical optimization to find \hat{n} that maximizes
the \log Posterior
fred hutch

Copy Number Analysis of Subclonal Heterogeneity

Heterogeneous tumour biopsy

Cellular prevalence

- Subclonal CNA events have weaker signals compared to clonal CNAs because of contribution from non-tumor cells with normal copy number signals

Modeling subclonal copy number

- Add two additional states for subclonal deletion and subclonal gain, $K_{s c}=\{1,3\}$ and $K=\left\{0,1,2,3,4,5, K_{s c}\right\}$
- The expected log ratio for subclonal copy number state $k_{s c} \in\{1,3\}$ is

- s is the fraction of cancer cells without CNA event
- $(1-s)$ is the fraction of cancer cells with CNA event (aka tumor cellular prevalence)

FRED HUTCH
Tumor Fraction $=0.82$
Cellular Prevalence $=0.29$

3. Assessing Statistical Power for Variant Discovery

- Power calculation
- Calibrating sequencing depth for variant discovery
- References:
- Cibulskis et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology 31:213-19 (2013)
- Adalsteinsson et al. Nature Communications 8:1324 (2017). DOI: 10.1038/ s41467-017-00965-y

Sensitivity of Mutation Calling is Subject to Heterogeneity

- Tumor biopsy samples may exhibit intra-tumor heterogeneity
- The tumor fraction (aka tumor content) influences our ability to detect an SNV at a specific locus
- Here are some questions that warrant statistical considerations:
- What is our power (sensitivity) to detect an SNV given the read depth?
- What read depth is required to detect an SNV at a specific power?
- If we do not detect a mutation, is it because (1) there is no mutation? Or (2) we do not have sufficient power to make a confident call?
- Answering these questions with theoretical power calculations can help to calibrate the required sequencing depth and the expectation to detect mutations.

Power Calculation for Mutation Detection

- Let μ be the expected probability of observing a variant read at a locus
- Tumor fraction α, copy number c, and multiplicity M

$$
\mu=\frac{\alpha M}{\alpha c+2(1-\alpha)}
$$

"average \# of chromosomes with the variant tumor cells in the sample"
"average \# of chromosomes from all cells in sample"

- $\mu=\frac{\alpha}{2}$ for tumor copy number $c=2$ and multiplicity $M=1$ (for heterozygous SNV, e.g. AB)
- The power to detect ≥ 3 variant reads at locus i with N_{i} total read depth is estimated using a binomial exact test

$$
\begin{aligned}
& p(X \geq 3)=\sum_{k=3}^{N} \operatorname{Bin}(k \mid N, \mu) \\
& p(X \geq 3)=1-[\operatorname{Bin}(0 \mid N, \mu)+\operatorname{Bin}(1 \mid N, \mu)+\operatorname{Bin}(2 \mid N, \mu)]
\end{aligned}
$$

Power Calculation for Mutation Detection

What is our power (sensitivity) to detect an SNV at a specific tumor fraction?

What read depth is required to detect an SNV at a specific power?

4. Structural Rearrangement Analysis in Cancer Genomes

4. Structural Rearrangement Analysis in Cancer Genomes

- Structural variant types predicted from sequencing analysis
- Complex genomic structural rearrangement patterns
- Brief overview of software tools

Abnormal chromosomal rearrangements are prevalent in cancer

Wh fillilts Iullitur [1] Datil - A * 14

focal rearrangement
tandem duplication

deletion

Structural Variants: Sequence Features

"discordant read pair"

read pairs with aberrant inferred fragment length
"copy number change" abrupt change in read coverage

Simple Structural Variants: Deletion \& Tandem Duplications

Deletion

Tandem Duplication

Simple Structural Variants: Inversions \& Translocations

Translocation

Complex Structural Variants of 2+ more events

Complex Event (non-overlapping)

Sample

Complex Event
 (overlapping)

Complex Structural Variant: Example of PTEN deletion

Brief History of Genome Rearrangement Discoveries in Cancer

Complex Cancer Genome Rearrangement Patterns

Breakage-Fusion-Bridge (BFB) Cycles

Chromothripsis: Catastrophic DNA shattering

Chromosome

copy number

Micronuclei

copy number
daughter a

daughter b

Wildtype chromosome (germline)
A B C D E F G H I J•K L M N O

Stephens et al. Cell 144:27-40 (2011) Korbel and Campbell. Cell 152:1226-36 (2013)
fred hutch

Concurrent Breakage-Fusion-Bridge \& Chromothripsis

First mitosis
Bridge formation

Umbreit et al. Science 368:282 (2020)
Zhang and Pellman. CSH Symp 80:117-37 (2016)

Chromoplexy: Inter-dependent disruption of DNA within close spatial proximity

Alterations of oncogene regulation and genome topology

Battey et al. Cell 34:779-87 (1983).

Duplication of Enhancer

Enhancer Hijacking

Beroukhim, Zhang, Meyerson. Nat Genet 49:5-6 (2017).
Gröschel et al. Cell 157:369-81 (2014).
Northcott et al. Nature 511:428-34 (2014).
Hnisz et al. Science 351:1454-58 (2016).
Weischenfeldt et al. Nat Genet 49:65-74 (2017).

Extra-Chromosomal DNA: Double Minutes \& Neo-chromosomes

Structural Variation Tools for Cancer Genome Analysis

Popular SV Methods for Cancer Genomes

SV Breakpoint Methods	Discordant Reads	Split Reads	Assembly	Software	References
DELLY	\checkmark	\checkmark		https://github.com/ dellytools/delly	Rausch et al. Genome Biol (2012)
LUMPY	\checkmark	\checkmark		https://github.com/ arq5x/lumpy-sv	Layer et al. Genome Biol (2014)
GRIDSS	\checkmark	\checkmark	\checkmark	https://github.com/ PapenfussLab/gridss	Cameron et al. Genome Res (2017)
SVABA	\checkmark	\checkmark	\checkmark	https://github.com/ walaj/svaba	Wala et al. Genome Res (2018)
BRASS	\checkmark	\checkmark	\checkmark	https://github.com/ cancerit/BRASS	Sanger Pipeline

