Cancer Center

CANCER GENOMICS

Lecture 1:

Introduction to Cancer Genome Analysis

GENOME 541 Spring 2023
May 9, 2023

Gavin Ha, Ph.D.
Public Health Sciences Division
Human Biology Division
y @GavinHa
gha@fredhutch.org
(c) https://github.com/GavinHaLab

GavinHaLab.org

1 Introduction to Cancer Genome Analysis

2 Probabilistic Methods for Mutation Detection

3 Probabilistic Methods for Profiling Copy Number Alteration

4 Additional Topics: Tumor Heterogeneity, Mutation Detection Power, Structural Variation

Outline: Introduction to Cancer Genome Analysis

1.Intro to Cancer Genome Alterations

- Genomic alterations in cancer: drivers vs passengers, somatic vs germline
- Tumor evolution and heterogeneity

2.Overview of Cancer Genome Analysis

- Computational strategy and workflow
- Tumor DNA Sequencing
- Types of genomic alterations predicted from tumor sequencing
- Methods/tools/algorithms in following lectures

3.Primer on statistical modeling

- Binomial probability distribution, Bayesian statistics, parameter learning

The hallmarks of cancer

- All cancers exhibit many of these hallmarks that lead to tumor growth
- Genome instability \& mutation is an enabling characteristic that can result in multiple hallmarks
\qquad

Cancer is a disease of the genome

Cancer progression results from mutations acquired throughout lifetime

- Few driver mutations, many passenger mutations
- Mutational process can be intrinsic and from environmental mutagens

Genomic Variation: Somatic and Germline

Variant or Mutation or Alteration or Polymorphism

- Changes in the genome sequence of a sample compared to a reference sequence

Germline Variant

- Chromosomes: 22 autosomal pairs + 1 sex pair
- Each set inherited from maternal and paternal germline cells
- Variant inherited from one or both parental chromosomes
- Source of genetic differences between ancestral populations and individuals
- Polymorphism: >1\% frequency in a population

Somatic Variant

- Mutation acquired during individual's lifetime
- Important to identify in sporadic cancers and other non-familial diseases

Types of Genomic Variation: Small/Short mutations

1. Single nucleotide base substitutions

- Germline single nucleotide polymorphism (SNP)
- Somatic single nucleotide variant (SNV)

2. Small insertions or deletions

- Germline or somatic insertion or deletion (INDEL)
- Small indels: 1 bp - 20 bps
- Large indels: 20-10,000 bps

Single nucleotide variant

Types of Genomic Variation: Large alterations

3. Copy number changes

- Germline copy number variant (CNV) or polymorphism (CNP)
- Somatic copy number variant (CNV) or alterations (CNA)
- Size > 1 kbps, typically mega-bases (depending on resolution)

4. Structural rearrangements

- Germline or Somatic structural variant (SV)
- Simple events: deletion, duplication, inversion, translocation
- Single nucleotide resolution for breakpoints
- Size > 20 bps, typically kilo-bases to mega-bases

Types of Genomic Variation in Cancer

Single nucleotide variant

Insertion-Deletion (INDEL)

Copy number alterations

Fred Hutchinson Cancer Center \qquad Structural rearrangements

Tumors exhibit different levels of heterogeneity

Across patient populations:

1. Cancer types: between primary tumors of different organs or tissue-of-origin (eg. Breast and lung cancers)
2. Tumor subtypes: between subset of patients with tumors having similar molecular features (e.g. ER+ and ER- breast cancers)
3. Same-subtype: between tumors from different patients

Within an individual patient:
4. Inter-tumor: between tumors within a patient
5. Intra-tumor heterogeneity: between cells within a tumor lesion (e.g. tumor clones, stromal cells, infiltrating lymphocytes)

Cancer Genes: Driver vs Passenger Genomic Alterations

How do we find the mutated genes that drive cancer?

- Significantly Mutated Genes: recurrently mutated genes in patient cohorts
- Account for covariates (e.g. gene length, expression, replication timing)

Tumors exhibit different levels of heterogeneity

Across patient populations:

1. Cancer types: between primary tumors of different organs or tissue-of-origin (eg. Breast and lung cancers)
2. Tumor subtypes: between subset of patients with tumors having similar molecular features (e.g. ER+ and ER- breast cancers)
3. Same-subtype: between tumors from different patients

Within an individual patient:

4. Inter-tumor: between tumors within a patient
5. Intra-tumor heterogeneity: between cells within a tumor lesion (e.g. tumor clones, stromal cells, infiltrating lymphocytes)

Levels of heterogeneity

Heterogeneity bases
d Genome

- Point mutations, SNVs - Insertions and deletions - Amplifications - Allelic losses, LOH - Karyotype aberrations
e Transcriptome/Proteome Different patterns of gene expression . Over- or underexpression of some genes compared to other subclones -Mirrors heterogeneity on the level of genome/epigenome

f Epigenome Different patterns of DNA methylation and noncoding RNA regulation
Differences in chromatine and histone structure

Grzywa et al. Trans/ Oncol. 10:956-75 (2017)

Tumors undergo genome evolution and clonal expansion

- Clonal diversity may have implications for treatment resistance
- Dynamics of clones can change in the blood and metastases

Tumor genome evolution selects for cellular phenotypes

Inferring intra-tumor genomic heterogeneity from sequencing

Inferring evolutionary history of a tumor from sequencing

2. Overview of Cancer Genome Analysis

- Computational strategy and workflow
- Tumor DNA sequencing
- Whole genome vs whole exome vs targeted sequencing
- Types of genomic alterations predicted from tumor sequencing
- Methods/tools/algorithms in following lectures

General Workflow of Tumor Genome Sequencing (1)

- Tumor and Normal pairing
- Distinguish somatic and germline alterations
- Capture baits can be used to select regions
- e.g. whole exome or targeted gene panels
- Potential sources of error can arise

Genome Sequencing: Massively Parallel Sequencing

Reads are aligned to a reference sequence with bioinformatics software. After alignment, differences between the reference genome and the newly sequenced reads can be identified.

Fred Hutchinson Cancer Center
$\underline{\text { https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina sequencing introduction.pdf }}$

Genome Sequencing: Sequence vs Physical Coverage

General Workflow of Tumor Genome Sequencing (2)

Whole Exome Targeted Panel

Copy Number Alterations

Structural Variants
 Rearrangement

Targeted Gene Sequencing

- Target regions (1-5Mb)

100-25000x target coverage

- Least sequencing required
- Panel design costs

Coding mutations (selected)

- Targeted rearrangements

Types of Genomic Alterations Predicted from Sequencing

Mutations (SNV, INDEL)

Lecture 2

Copy Number Alterations

Lecture 3

Structural Variants

Lecture 4

Genome Sequencing: International Consortia \& Projects

1000 Genomes Project (https://www.internationalgenome.org/) UK10K (https://www.uk10k.org/)

The 100,000 Genomes Project (https://www.genomicsengland.co.uk/)

- Rare disease, cancer, infectious disease

IGSR: The International Genome Sample Resource,
Providing ongoing support for the 1000 Genomes Project data

Genome 10K Project (https://genome10k.soe.ucsc.edu/) - Genomic "zoo" of 16,000 vertebrate species

UK10K

Rare Genetic Variants in Health and Disease

Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/) Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/) The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) International Cancer Genome Consortium (ICGC) (https://icgc.org/)

Cancer Genome Sequence Data: Databases \& Online Resources

Cancer Genome Sequence Data: Databases \& Online Resources

Cancer Genome Sequence Data: Databases \& Online Resources

ICGC Data Portal

\equiv Cancer Projects
Q Advanced Search
【 Data Analysis
e DCC Data Releases
Data Repositories

Cancer genomics data sets visualization, analysis and download.

Data Release 28
March 27th, 2019

Cancer projects 86

Cancer primary sites 22

Donor with molecular data in DCC 22,330

Total Donors

Simple somatic mutations
81,782,588

Advanced Search

3. Primer on statistical modeling

- Probability
- Unsupervised learning, probability rules \& Bayes’ theorem
- Binomial distribution, Bayesian statistics
- Beta-binomial model example
- Mixture models, EM inference
- References:
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738
- https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

Sequencing Data Analysis Requires Probabilistic Models

- Sequencing data contain uncertainty due to
- Technical noise from imperfect measurements \& errors
- Biological features in the signal measurements
- How do we predict genomic alterations accounting for these features and noise?
- Need approaches to learn the patterns of these features from the data...

Types of machine learning:

- Supervised: output data y, input data \boldsymbol{x}, and training set $D=\{(\boldsymbol{x}, y)\}$
- Classification (y are labels), Regression (y is continuous)
- Unsupervised: Only given input data $D=\{\boldsymbol{x}\}$, learn the patterns of the data
- E.g. clustering input data \boldsymbol{x} into K clusters by estimating their assignments z

Primer: Probability Theory

Let X be a random variable. The probability for the event $X=x$ for some value x is $p(X=x)$ or $p(x)$ for short. Let Y be another random variable.

Probability Rules

- Sum rule: $p(X)=\sum_{Y} p(X, Y)$
- Product rule: $p(X, Y)=p(Y \mid X) p(X)$ and $p(Y, X)=p(X \mid Y) p(Y)$
- Conditional Probabilities: $p(Y \mid X)=\frac{p(X, Y)}{p(X)}$
- Marginal Probabilities: $p(X)=\sum_{Y} p(Y, X)=\sum_{Y} p(X \mid Y) p(Y)$
. Bayes' Theorem (rule): $p(Y \mid X)=\frac{p(X, Y)}{p(X)}=$

Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- A referee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last season, once per game. We assume this coin was fair and had a probability $\mu=0.5$ for showing a heads. We kept track of the number of heads x that appeared.
- What is the probability of seeing a specific number of heads? e.g. $x=25$ out of $N=40$ tosses

Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- A referee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last season, once per game. We assume this coin was fair and had a probability $\mu=0.5$ for showing a head. We kept track of the number of heads x that appeared.
- What is the probability of seeing a specific number of heads? e.g. $x=25$ out of $N=40$ tosses

Probability mass function

- Let X be the random variable representing the number of heads. If the probability of heads is μ, then X has a binomial distribution, $X \sim \operatorname{Bin}(N, \mu)$ or $p(X=x \mid N, \mu)=\operatorname{Bin}(x \mid N, \mu)$ where

$$
\operatorname{Bin}(x \mid N, \mu)=\binom{N}{x} \mu^{x}(1-\mu)^{N-x}
$$

number of ways the 25 heads is observed among the sequence of

- Our coin-toss example: for $x=25$ out of $N=40$ and a fair $\operatorname{coin} \mu=0.5$

Binomial likelihood model

- Suppose there are T different referees who toss the same coin $N=\left\{1, \ldots, N_{T}\right\}$ times and come up with head counts $\boldsymbol{x}=\left\{1, \ldots, x_{T}\right\}$.
- Assuming the referees' tosses are independent and identically distributed (iid), what is the probability of observing the head counts from all referees given the coin (e.g. $\mu=0.5$)?

$$
p\left(x_{1: T} \mid N_{1: T}, \mu\right)=\prod_{i=1}^{T} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \quad \text { Likelihood }
$$

- What if the coin wasn't fair and the probability of heads, μ, might not be 0.5 ?
\qquad

	\# of tosses (N)	\# of heads (x)
Referee 1	40	25
Referee 2	42	35
Referee 3	39	27
Referee T	XT $_{T}$	N_{T}

Maximum likelihood estimation (MLE)

-What is the probability of heads, μ, of this coin given the evidence?

- We can estimate this model parameter using maximum likelihood estimation

$$
\begin{aligned}
p\left(x_{1: T} \mid N_{1: T}, \mu\right) & =\prod_{i=1}^{T} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) & \text { Lilkelilhood } \\
\log p\left(x_{1: T} \mid N_{1: T}, \mu\right) & =\sum_{i=1}^{T} \log \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) & \text { Log-lilkelilhood }
\end{aligned}
$$

$$
\begin{aligned}
p\left(x_{1: T} \mid N_{1: T}, \mu\right) & =\prod_{i=1}^{T} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \\
\log p\left(x_{1: T} \mid N_{1: T}, \mu\right) & =\sum_{i=1}^{T} \log \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \\
\hat{\mu} & =\frac{\sum_{i=1}^{T} x_{i}}{\sum_{i=1}^{T} N_{i}}
\end{aligned}
$$

Bayesian Statistics: Prior distribution for model parameters

Likelihood for Binomial Model

$p\left(x_{1: T} \mid N_{1: T}, \mu\right)=\prod_{i=1}^{T} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right)$ Likelilhood

- MLE uses the evidence to estimate parameter $\hat{\mu}$ but our

	\# of tosses (N)	\# of heads (x)	Prop. of heads
Referee 1	40	25	0.63
Referee 2	42	35	0.83
Referee 3	39	27	0.69
Referee T	X_{T}	N_{T}	$\mathrm{XT}_{\mathrm{T}} / \mathrm{N}_{\mathrm{T}}$

- Zero count or sparse data problem: If you have a bad record keeper who only tallies coin tosses from referees who never tosses a tail, then does that mean the concept of tails on a coin does not exist at all?
- Can we capture a more natural expectation of how a coin might behave? Also, what if we have some knowledge that the coin might be biased?

Prior Distribution for binomial parameter, μ

- The proportion of heads is between 0 and $1(\mu \in[0,1])$ and can be sampled from a distribution itself
- μ can be drawn from a Beta distribution, which is in the interval [0,1], with hyper-parameters α and β

$$
\begin{aligned}
\mu & \sim \operatorname{Beta}(\alpha, \beta) \\
p(\mu) & =\operatorname{Beta}(\mu \mid \alpha, \beta)
\end{aligned} \quad \text { Prior }
$$

Bayesian statistics: Posterior for Beta-Binomial Model (1)

Binomial likelihood and Beta prior

- T different head counts $\boldsymbol{x}=\left\{1, \ldots, x_{T}\right\}$ for $N=\left\{1, \ldots, N_{T}\right\}$ sets of tosses and a prior distribution on μ (prob. of heads)

$$
\begin{array}{rlrl}
p\left(x_{1: T} \mid N_{1: T}, \mu\right) & =\prod_{i=1}^{T} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) & & \text { Lilkelilhood } \\
p(\mu) & =\operatorname{Beta}(\mu \mid \alpha, \beta) & \text { Prior }
\end{array}
$$

- To estimate parameter μ in a Bayesian framework
- We need the posterior, $p(\mu \mid \boldsymbol{x})$, but only have $p(\boldsymbol{x} \mid \mu)$ and $p(\mu)$
- Recall Bayes' Theorem:

$$
\begin{aligned}
& \text { Likelihood Prior } \\
& p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{\sum_{Y^{\prime}} p\left(X \mid Y^{\prime}\right) p\left(Y^{\prime}\right)} \propto \\
& \text { Posterior }
\end{aligned}
$$

- The posterior is our belief state by combining evidence from observations and our prior beliefs.

Bayesian statistics: Posterior for Beta-Binomial Model (2)

Beta-Binomial Model: Posterior distribution

- To estimate the model parameter μ in a Bayesian framework, we compute the posterior, $p(\mu \mid \boldsymbol{x})$

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)
$$

- Beta is a conjugate prior for the binomial - the product of binomial and Beta has the form of a Beta

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)=\operatorname{Beta}\left(\mu \mid x_{i}+\alpha, N_{i}-x_{i}+\beta\right)
$$

Likelihood Prior Posterior
\square

Bayesian statistics: Posterior for Beta-Binomial Model (2)

Beta-Binomial Model: Posterior distribution

- To estimate the model parameter μ in a Bayesian framework, we compute the posterior, $p(\mu \mid \boldsymbol{x})$

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)
$$

- Beta is a conjugate prior for the binomial - the product of binomial and Beta has the form of a Beta

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)=\operatorname{Beta}\left(\mu \mid x_{i}+\alpha, N_{i}-x_{i}+\beta\right)
$$

Likelihood Prior Posterior

Bayesian statistics: MAP estimate

Beta-Binomial Model: Posterior distribution

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)=\operatorname{Beta}\left(\mu \mid x_{i}+\alpha, N_{i}-x_{i}+\beta\right)
$$

- Then, what is the probability of heads, μ, of this coin given the evidence and the prior?

Maximum a posteriori (MAP) estimate

- From the posterior, we can estimate the parameter using the maximum a posteriori (MAP), $\hat{\mu}_{M A P}$
- MAP refers to the mode of the posterior distribution and the mode of a Beta is $\frac{\alpha-1}{\alpha+\beta-2}$
- Since the posterior has the form of a Beta distribution, then the MAP is $\frac{\alpha^{\prime}-1}{\alpha^{\prime}+\beta^{\prime}-2}$

$$
\begin{gathered}
\alpha^{\prime}=x_{i}+\alpha \\
\beta^{\prime}=\left(N_{i}-x_{i}\right)+\beta
\end{gathered}
$$

Section 3.3 in Murphy (2012).
Machine Learning: A Probabilistic
Perspective. MIT Press

$$
\hat{\mu}_{M A P}=\frac{x_{i}+\alpha-1}{N_{i}+\alpha+\beta-2}
$$

MAP

Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

Data

Referees $1, \ldots, T$
For each Referee i

- Coin Tosses: N_{i}
- Count of heads: x_{i}
- Count of tails: $N_{i}-x_{i}$

Parameters
Probability to draw coins: $\pi_{\text {fair }}, \pi_{\text {heads }}, \pi_{\text {tails }}$
Probability of heads for 3 types of coins
$\mu_{\text {fair }}, \mu_{\text {heads }}, \mu_{\text {tails }}$

Responsibilities

Probability that Referee i used coin $k: \gamma\left(Z_{i}=k\right)$

Mutation Calling from Sequencing Data

Data

Genomic loci $1, \ldots, T$
For each locus i

- Depth (total reads): N_{i}
- Count of reference reads: x_{i}
- Count of variant reads: $N_{i}-x_{i}$

Parameters

Probability of genotypes: $\pi_{A A}, \pi_{A B}, \pi_{B B}$
Probability of reference base for 3 genotypes:
$\mu_{A A}, \mu_{A B}, \mu_{B B}$
Responsibilities
Probability that locus i has genotype $k: \gamma\left(Z_{i}=k\right)$

Mixture Models: Online Tutorial and Resource

fiveMinuteStats (https://stephens999.github.io/fiveMinuteStats/)
by Dr. Matthew Stephens, Professor in Statistics \& Human Genetics at University of Chicago

1. Introduction to mixture models with probabilistic derivations and R code

- Examples with Bernoulli and Gaussian models
- https://stephens999.github.io/fiveMinuteStats/intro_to_mixture_models.html

2. Introduction to EM with Gaussian Mixture Model example and R code

- https://stephens999.github.io/fiveMinuteStats/intro_to_em.html

Homework \#7: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.

Due: May 19th, 2023

