

CANCER GENOMICS Lecture 1: Introduction to Cancer Genome Analysis GENOME 541 Spring 2023 May 9, 2023

Gavin Ha, Ph.D. Public Health Sciences Division Human Biology Division

@GavinHa
gha@fredhutch.org
https://github.com/GavinHaLab
GavinHaLab.org

1 Introduction to Cancer Genome Analysis

- **2** Probabilistic Methods for Mutation Detection
- **3** Probabilistic Methods for Profiling Copy Number Alteration
- **4** Additional Topics: Tumor Heterogeneity, Mutation **Detection Power, Structural Variation**

Outline: Introduction to Cancer Genome Analysis

1.Intro to Cancer Genome Alterations

- Genomic alterations in cancer: drivers vs passengers, somatic vs germline
- Tumor evolution and heterogeneity
- 2. Overview of Cancer Genome Analysis
 - Computational strategy and workflow
 - Tumor DNA Sequencing
 - Types of genomic alterations predicted from tumor sequencing
 - Methods/tools/algorithms in following lectures

3.Primer on statistical modeling

Binomial probability distribution, Bayesian statistics, parameter learning

The hallmarks of cancer

- All cancers exhibit many of these hallmarks that lead to tumor growth
- Genome instability & mutation is an enabling characteristic that can result in multiple hallmarks

Cancer is a disease of the genome

Cancer progression results from **mutations** acquired throughout lifetime

• Few driver mutations, many passenger mutations

Fred

Mutational process can be intrinsic and from environmental mutagens

Genomic Variation: Somatic and Germline

Variant or Mutation or Alteration or Polymorphism

• Changes in the genome sequence of a sample compared to a reference sequence

Germline Variant

- Chromosomes: 22 autosomal pairs + 1 sex pair
 - Each set inherited from maternal and paternal germline cells
- Variant inherited from one or both parental chromosomes
- Source of genetic differences between ancestral populations and individuals
- Polymorphism: >1% frequency in a population

Somatic Variant

- Mutation acquired during individual's lifetime
- Important to identify in sporadic cancers and other non-familial diseases

Types of Genomic Variation: Small/Short mutations

1. Single nucleotide base substitutions	Sin
 Germline single nucleotide polymorphism (SNP) 	т
 Somatic single nucleotide variant (SNV) 	G
2. Small insertions or deletions	chromo norm
 Germline or somatic insertion or deletion (INDEL) 	TAGG
 Small indels: 1 bp - 20 bps Large indels: 20 - 10,000 bps 	GA

gle nucleotide variant

Insertion-Deletion (INDEL)

Types of Genomic Variation: Large alterations

3. Copy number changes

- Germline copy number variant (CNV) or polymorphism (CNP)
- Somatic copy number variant (CNV) or alterations (CNA)
- Size > 1 kbps, typically mega-bases (depending on resolution)

4. Structural rearrangements

- Germline or Somatic structural variant (SV)
- Simple events: deletion, duplication, inversion, translocation
- Single nucleotide resolution for breakpoints
- Size > 20 bps, typically kilo-bases to mega-bases

Types of Genomic Variation in Cancer

Tumors exhibit different levels of heterogeneity

Across patient populations:

1. Cancer types: between primary tumors of different organs or tissue-of-origin (eg. Breast and lung cancers)

2. **Tumor subtypes**: between subset of patients with tumors having similar molecular features (e.g. ER+ and ER- breast cancers)

3. **Same-subtype**: between tumors from different patients

Within an individual patient:

4. Inter-tumor: between tumors within a patient

5. Intra-tumor heterogeneity: between cells within a tumor lesion (e.g. tumor clones, stromal cells, infiltrating lymphocytes)

d Genome

Grzywa et al. Transl Oncol. 10:956-75 (2017)

Cancer Genes: Driver vs Passenger Genomic Alterations

How do we find the mutated genes that *drive* cancer?

- Significantly Mutated Genes: recurrently mutated genes in patient cohorts
- Account for covariates (e.g. gene length, expression, replication timing)

Jenes in patient cohorts replication timing)

Tumors exhibit different levels of heterogeneity

Across patient populations:

1. **Cancer types**: between primary tumors of different organs or tissue-of-origin (eg. Breast and lung cancers)

2. **Tumor subtypes**: between subset of patients with tumors having similar molecular features (e.g. ER+ and ER- breast cancers)

3. **Same-subtype**: between tumors from different patients

Within an individual patient:

4. Inter-tumor: between tumors within a patient

5. **Intra-tumor heterogeneity**: between cells within a tumor lesion (e.g. tumor clones, stromal cells, infiltrating lymphocytes)

Grzywa et al. Transl Oncol. 10:956-75 (2017)

Tumors undergo genome evolution and clonal expansion

- Clonal diversity may have implications for treatment resistance
- Dynamics of clones can change in the blood and metastases

Van Loo and Voet. Curr Opin Genet Dev (2014)

Tumor genome evolution selects for cellular phenotypes

Fred Hutchinson Cancer Center

Aparicio & Caldas. NEJM. 368:842-51 (2013)

Inferring intra-tumor genomic heterogeneity from sequencing

- Combined signals from normal and multiple populations of tumor cells.
- Cellular prevalence: proportion of tumor cells harboring event
- Discuss further in Lecture 4...

Adapted from Beerenwinkel et al. Syst. Biol. 64:e1-25 (2015)

2. Overview of Cancer Genome Analysis

- Computational strategy and workflow
- Tumor DNA sequencing
- Whole genome vs whole exome vs targeted sequencing
- Types of genomic alterations predicted from tumor sequencing
- Methods/tools/algorithms in following lectures

General Workflow of Tumor Genome Sequencing (1)

- Tumor and Normal pairing
 - Distinguish somatic and germline alterations
- Capture baits can be used to select regions
 - e.g. whole exome or targeted gene panels
- Potential sources of error can arise
 - 1. 8-oxoG transversions (C>A/G>T)
 - 2. PCR errors and GC content bias
 - 3. Sequencing errors

Genome Sequencing: Massively Parallel Sequencing

Fred Hutchinson Cancer Center

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

Genome Sequencing: Sequence vs Physical Coverage

- **Sequence Coverage** = number of sequenced reads spanning locus
- **Physical Coverage** = number of DNA fragments spanning locus
- Mutation detection rely on sequence coverage
- Rearrangement detection rely on both

General Workflow of Tumor Genome Sequencing (2)

Copy Number Alterations

Gain Deletion

Structural

Targeted Gene Sequencing

- Target regions (1-5Mb)
- 100-25000x target coverage
- Least sequencing required
- Panel design costs
- Coding mutations (selected)
- Targeted rearrangements

Types of Genomic Alterations Predicted from Sequencing

Mutations (SNV, INDEL)

SNV C C C A A A A A A A A

Copy Number Alterations

Lecture 2

Lecture 3

Structural Variants

Lecture 4

Genome Sequencing: International Consortia & Projects

1000 Genomes Project (<u>https://www.internationalgenome.org/</u>) UK10K (<u>https://www.uk10k.org/</u>)

The 100,000 Genomes Project (<u>https://www.genomicsengland.co.uk/</u>)

Rare disease, cancer, infectious disease

Genome 10K Project (<u>https://genome10k.soe.ucsc.edu/</u>)

Genomic "zoo" of 16,000 vertebrate species

Exome Aggregation Consortium (ExAC) (<u>http://exac.broadinstitute.org/</u>) Genome Aggregation Database (gnomAD) (<u>https://gnomad.broadinstitute.org/</u>) The Cancer Genome Atlas (TCGA) (<u>https://portal.gdc.cancer.gov/</u>) International Cancer Genome Consortium (ICGC) (https://icgc.org/)

UK10K Rare Genetic Variants in Health and Disease

#100kThankYous

International Cancer Genome

Cancer Genome Sequence Data: Databases & Online Resources

Query Quick Searc	n Beta! Download	Please cite: Ce	rami et al., 2012 & Gao et al.,
Select Studies for Visu	alization & Analysis:	0 studies selected (0 samples)	arch
anCancer Studies	3 Quick select: TCC	GA PanCancer Atlas Studies Curated set of non-redundant	studies
Cell lines	³ PanCancer Stu	dies	
drenal Gland	3 MSK-IMPACT C	linical Sequencing Cohort (MSKCC, Nat Med 2017)	10945 samples 🕄 🖉 🌭
		er (TCGA, Nat Genet 2016)	1144 samples 🚯 <i> </i> 🗲
mpulla of Vater	1 Dediatric Pan-ca	ancer (Columbia U, Genome Med 2016)	103 samples 🚯 <i> </i> 🕏
Biliary Tract	9 Cell lines		
Bladder/Urinary Tract	15 Cancer Cell Line	Encyclopedia (Broad, 2019)	1739 samples 🕄 /
adden onnary naer		Encyclopedia (Novartis/Broad, Nature 2012)	1020 samples 🚯 <i>4</i> 🕏
Bone	2 NCI-60 Cell Line	s (NCI, Cancer Res 2012)	67 samples 🛈 🗖 🤤
Bowel	¹⁰ Adrenal Gland		
Breast	16 Adrenocortical C	arcinoma	
NS/Brain	10	Carcinoma Project (2019)	1049 samples 🛈 <i></i> 🔩
INS/Dram		Carcinoma (TCGA, Firehose Legacy)	92 samples 🛈 🗏 🌑
Cervix	2 Adrenocortical C	Carcinoma (TCGA, PanCancer Atlas)	92 samples 🕄 🗐 🔩
sophagus/Stomach	14 Ampulla of Vate	er	
Eye	3 Ampullary Carcin		
lead and Neck		noma (Baylor College of Medicine, Cell Reports 2016)	160 samples 🛈 🖻 🤩
	13 Biliary Tract		
Kidney	17 Cholangiocarcino	oma	
iver	8 Cholangiocarcine	oma (MSK, Clin Cancer Res 2018)	195 samples 🚯 <i> </i> 😓
1100		oma (National Cancer Centre of Singapore, Nat Genet	15 samples 🔀 🖉 🤤
ung		oma (National University of Singapore, Nat Genet 2012)	8 samples 🕄 🖉 🤤
ymphoid	20	oma (TCGA, Firehose Legacy) oma (TCGA, PanCancer Atlas)	51 samples 🔀 🖨 📞 36 samples 🔁 🗲
fyeloid		oma (TCGA, PanCancer Atlas) plangiocarcinoma (JHU, Nat Genet 2013)	40 samples () 🖉 🗲
.,		HOLANGIOCARCINOMA	
Other	15 Intrahenatic Cho		

Fred Hutchinson Cane

Login

What's New

@cbioportal У

We are hosting a webinar series to teach cBioPortal features to beginner and advanced users. Sessions will be held on five consecutive Thursdays at 11 AM EDT, starting on April 30th. Please register here: bit.ly/cbioportal-web..

Sign up for low-volume email news alerts

Subscribe

Cancer Studies

The portal contains 283 cancer studies (details)

Cases by Top 20 Primary Sites

Gallbladder Cancer

Cancer Genome Sequence Data: Databases & Online Resources

Data Release 28	March 27th, 2019
Cancer projects	86
Cancer primary sites	22
Donor with molecular data in DCC	22,330
Total Donors	24,289
Simple somatic mutations	81,782,588

📥 Download Release

3. Primer on statistical modeling

- Probability
 - Unsupervised learning, probability rules & Bayes' theorem
 - Binomial distribution, Bayesian statistics
 - Beta-binomial model example
- Mixture models, EM inference
- References:
 - Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
 - Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738
 - <u>https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf</u>

27

Sequencing Data Analysis Requires Probabilistic Models

- Sequencing data contain uncertainty due to
 - Technical noise from imperfect measurements & errors
 - Biological features in the signal measurements
- How do we predict genomic alterations accounting for these features and noise? Need approaches to learn the patterns of these features from the data...
- Types of machine learning:
 - Supervised: output data y, input data x, and training set $D = \{(x, y)\}$
 - Classification (y are labels), Regression (y is continuous)
 - Unsupervised: Only given input data $D = \{x\}$, learn the patterns of the data
 - E.g. clustering input data x into K clusters by estimating their assignments z

Primer: Probability Theory

Let X be a random variable. The probability for the event X = x for some value x is p(X = x) or p(x) for short. Let Y be another random variable. **Probability Rules**

- Sum rule: $p(X) = \sum_{Y} p(X, Y)$
- Product rule: p(X, Y) = p(Y|X)p(X) and p(Y, X) = p(X|Y)p(Y)

• Conditional Probabilities: $p(Y|X) = \frac{p(X, Y)}{p(X)}$

• Marginal Probabilities: $p(X) = \sum_{Y} p(Y, X) = \sum_{Y} p(X | Y) p(Y)$

• Bayes' Theorem (rule): $p(Y|X) = \frac{p(X, Y)}{n(X)} =$

Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- A referee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last season, once per game. We assume this coin was fair and had a probability $\mu = 0.5$ for showing a heads. We kept track of the number of heads x that appeared.
- What is the probability of seeing a specific number of heads? e.g. x = 25 out of N = 40 tosses

Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- A referee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last season, once per game. We assume this coin was fair and had a probability $\mu = 0.5$ for showing a head. We kept track of the number of heads x that appeared.
- What is the probability of seeing a specific number of heads? e.g. x = 25 out of N = 40 tosses **Probability mass function**
- Let X be the random variable representing the number of heads. If the probability of heads is μ , then X has a binomial distribution, $X \sim Bin(N, \mu)$ or $p(X = x | N, \mu) = Bin(x | N, \mu)$ where

$$Bin(x \mid N, \mu) = \binom{N}{x} \mu^{x} (1 - \mu)^{N - x}$$

Our coin-toss example: for x = 25 out of N = 40 and a fair coin $\mu = 0.5$

number of ways the 25 heads is observed among the sequence of 40 tosses.

Binomial likelihood model

- Suppose there are *T* different referees who toss the *same* coin $N = \{1, ..., N_T\}$ times and come up with head counts $x = \{1, ..., x_T\}$.
- Assuming the referees' tosses are *independent* and *identically distributed* (**iid**), what is the probability of observing the head counts from *all referees* given the coin (e.g. $\mu = 0.5$)?

$$p(x_{1:T}|N_{1:T},\mu) = \prod_{i=1}^{T} Bin(x_i|N_i,\mu)$$
 Likelihood

• What if the coin wasn't fair and the probability of heads, μ , might not be 0.5?

	# of tosses (N)	# of heads (x)
Referee 1	40	25
Referee 2	42	35
Referee 3	39	27
Referee T	Хт	NT

Maximum likelihood estimation (MLE)

- What is the probability of heads, μ , of this coin given the evidence?
- We can estimate this model *parameter* using maximum likelihood estimation

$$p(x_{1:T}|N_{1:T},\mu) = \prod_{i=1}^{T} Bin(x_i|N_i,\mu)$$
Likelihood
$$\log p(x_{1:T}|N_{1:T},\mu) = \sum_{i=1}^{T} \log Bin(x_i|N_i,\mu)$$
Log-likelihood
$$\hat{\mu} = \frac{\sum_{i=1}^{T} x_i}{\sum_{i=1}^{T} N_i}$$
MLE

Teu nulchinson cancel cente

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

Bayesian Statistics: Prior distribution for model parameters

Likelihood for Binomial Model

$$p(x_{1:T}|N_{1:T},\mu) = \prod_{i=1}^{T} Bin(x_i|N_i,\mu) \text{Likelihood}$$

- Re Re Re Re
- MLE uses the evidence to estimate parameter $\hat{\mu}$ but our sample size is small and MLE may overfit
- Zero count or sparse data problem: If you have a bad record keeper who only tallies coin tosses from referees who never tosses a tail, then does that mean the concept of tails on a coin does not exist at all?
- Can we capture a more natural expectation of how a coin might behave? Also, what if we have some knowledge that the coin might be biased?

Prior Distribution for binomial parameter, μ

- The proportion of heads is between 0 and 1 ($\mu \in [0,1]$) and can be sampled from a distribution itself
- μ can be drawn from a Beta distribution, which is in the interval [0,1], with hyper-parameters α and β

 $\mu \sim Beta(\alpha, \beta)$ $p(\mu) = Beta(\mu \mid \alpha, \beta)$

Fred Hutchinson Cancer Center

	# of tosses (N)	# of heads (x)	Prop. of heads
eferee 1	40	25	0.63
eferee 2	42	35	0.83
eferee 3	39	27	0.69
eferee T	XT	NT	x _T /N _T

Prior

Bayesian statistics: Posterior for Beta-Binomial Model (1)

Binomial likelihood and Beta prior

• T different head counts $x = \{1, ..., x_T\}$ for $N = \{1, ..., N_T\}$ sets of tosses and a *prior* distribution on μ (prob. of heads)

$$p(x_{1:T} | N_{1:T}, \mu) = \prod_{i=1}^{T} Bin(x_i | N_i, \mu)$$
$$p(\mu) = Beta(\mu | \alpha, \beta)$$

Likelihood Prior

- To estimate parameter μ in a Bayesian framework
 - We need the *posterior*, $p(\mu | \mathbf{x})$, but only have $p(\mathbf{x} | \mu)$ and $p(\mu)$

• Recall Bayes' Theorem:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y'} p(X|Y')p(Y')} \circ$$

Posterior

The posterior is our belief state by combining evidence from observations and our prior beliefs.

Likelihood Prior

Bayesian statistics: Posterior for Beta-Binomial Model (2)

Beta-Binomial Model: Posterior distribution

• To estimate the model parameter μ in a Bayesian framework, we compute the **posterior**, $p(\mu | \mathbf{x})$

 $p(\mu \mid x_i) \propto Bin(x_i \mid N_i, \mu) \times Beta(\mu \mid \alpha, \beta)$

• Beta is a *conjugate prior* for the binomial — the product of binomial and Beta has the form of a Beta

 $p(\mu \mid x_i) \propto Bin(x_i \mid N_i, \mu) \times Beta(\mu \mid \alpha, \beta) = Beta(\mu \mid x_i + \alpha, N_i - x_i + \beta)$

Likelihood Prior

Posterior

Bayesian statistics: Posterior for Beta-Binomial Model (2)

Beta-Binomial Model: Posterior distribution

• To estimate the model parameter μ in a Bayesian framework, we compute the **posterior**, $p(\mu | \mathbf{x})$

 $p(\mu \mid x_i) \propto Bin(x_i \mid N_i, \mu) \times Beta(\mu \mid \alpha, \beta)$

• Beta is a *conjugate prior* for the binomial — the product of binomial and Beta has the form of a Beta

 $p(\mu | x_i) \propto Bin(x_i | N_i, \mu) \times Beta(\mu | \alpha, \beta) = Beta(\mu | x_i + \alpha, N_i - x_i + \beta)$

Likelihood Prior

Posterior

Bayesian statistics: MAP estimate

Beta-Binomial Model: Posterior distribution

 $p(\mu | x_i) \propto Bin(x_i | N_i, \mu) \times Beta(\mu | \alpha, \beta) = Beta(\mu | x_i + \alpha, N_i - x_i + \beta)$

• Then, what is the probability of heads, μ , of this coin given the **evidence** and the **prior**?

Maximum a posteriori (MAP) estimate

- From the posterior, we can estimate the parameter using the *maximum a posteriori (MAP)*, $\hat{\mu}_{MAP}$
- MAP refers to the mode of the posterior distribution and the mode of a Beta is
- Since the posterior has the form of a Beta distribution, then the MAP is

$$\alpha' = x_i + \alpha$$
$$\beta' = (N_i - x_i) + \beta$$

$$\hat{\mu}_{MAP} = \frac{x_i + \alpha - 1}{N_i + \alpha + \beta - 2} \qquad \mathbf{M}$$

Section 3.3 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

Fred Hutchinson Cancer Center

Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

Data

Referees $1, \ldots, T$

For each Referee *i*

- Coin Tosses: N_i
- Count of heads: x_i
- Count of tails: $N_i x_i$

Parameters

Probability to draw coins: π_{fair} , π_{heads} , π_{tails} Probability of heads for 3 types of coins

µ_{fair}, µ_{heads}, µ_{tails}

Responsibilities

Probability that Referee *i* used coin *k*: $\gamma(Z_i = k)$

Data

Genomic loci 1,..., T For each locus *i*

- Depth (total reads): N_i
- Count of reference reads: x_i
- Count of variant reads: $N_i x_i$

Parameters

Responsibilities

Mutation Calling from Sequencing Data

- **Probability of genotypes:** π_{AA} , π_{AB} , π_{BB}
- Probability of reference base for 3 genotypes:

 $\mu_{AA}, \mu_{AB}, \mu_{BB}$

Probability that locus *i* has genotype *k*: $\gamma(Z_i = k)$

Mixture Models: Online Tutorial and Resource

fiveMinuteStats (<u>https://stephens999.github.io/fiveMinuteStats/</u>)

by **Dr. Matthew Stephens**, Professor in Statistics & Human Genetics at University of Chicago

1. Introduction to mixture models with probabilistic derivations and R code

- Examples with Bernoulli and Gaussian models
- https://stephens999.github.io/fiveMinuteStats/intro_to_mixture_models.html
- 2. Introduction to EM with Gaussian Mixture Model example and R code
 - https://stephens999.github.io/fiveMinuteStats/intro_to_em.html

Homework #7: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.
- Due: May 19th, 2023